Application of artificial intelligence in e-governance: a comparative study of supervised machine learning and ensemble learning algorithms on crime prediction
Keywords:
Artificial Intelligence, Crime Prediction, E-governance, Machine Learning, Ensemble learningAbstract
In the developing world, the daily activities of humans’ social, political and economic life make it vital and easy to encounter the phenomenon of crime. Crime is an unnecessary evil in society and for any economic, social and political activities to run smoothly, criminal offenses must be completely eliminated from society. Advancement in information and communications technology enables law enforcement agencies to collect a huge amount of crime data, and the data collected by these organizaions have been doubling every two years. It has been found out that only 17% of the collected crime data is used in their operations today and several studies have noted that Law Enforcement Agencies are data rich but information poor. Machine learning, a subfield of artificial intelligence, has been used by government agencies in developed countries in different operations like face recognition, computer forensics, image and video analysis to identify criminals and crime predictions. It is therefore time for developing countries to leverage such technologies in order to reduce crimes. Therefore, this study proposes the application of supervised machine learning techniques in the prediction of crimes basing on the past crime data. During this study, we used open-source crime data from the UCI Machine learning repository to train and validate our algorithms. The performance of supervised machine learning and ensemble learning algorithms was done using crime data. The supervised machine learning algorithms used include K-Nearest Neighbour (KNN), decision tree classifier (CART), Naïve Bayes (NB) and Support vector machine (SVM). The ensemble learning algorithms used include AdaBoost (AD), Gradient Boosting Classifier (GBM), Random Forest (RF) and Extra Trees (ET). We used an accuracy metric to measure the performance of the algorithms. Python 3 was used in all the experiments using windows 10 laptop with 8GB RAM and 2.0GHZ processor. The performance of the supervised machine learning algorithms using the original datasets includes 60.33%, 56.24%, 57.01% and 59.06% for KNN, CART, NB, and SVM respectively. The performance of ensemble learning algorithms using the original datasets includes 58.58%, 59.81%, 55.23% and 55.74% for AD, GBM, RF and ET respectively. Experimental results revealed that KNN generally performed better when compared to the rest of the algorithms. we then developed a crime prediction model based on KNN and its prediction accuracy was 66% on our test dataset. The use of Artificial Intelligence has the potential to ameliorate several existing structural inefficiencies in the discharge of governmental functions. Machine learning, a subfield of artificial intelligence, has been used by government agencies in developed countries in crime analysis and predictions. It is therefore time for developing countries to leverage such technologies in order to reduce crimes.